Select Publications
-
- Sutcliffe MD, Tan PM, Fernandez-Perez A, Nam YJ, Munshi NV, and Saucerman JJ. High content analysis identifies unique morphological features of reprogrammed cardiomyocytes. (2018) Sci Rep 8: 1258. PDF
- Munshi NV. Resident macrophages: near and dear to your heart. (2017). Cell 169: 376-7. PDF
- Fernandez-Perez A and Munshi NV. Assessing cardiomyocyte subtypes following transcription factor-mediated reprogramming of mouse embryonic fibroblasts. (2017). J Vis Exp 121. PDF
- Bhattacharyya S, Bhakta M, and Munshi NV. Phenotypically silent Cre recombination within the postnatal ventricular conduction system. (2017) PLoS One 12: e0174517. PDF
- Nam YJ and Munshi NV. The promise of cardiac regeneration by in situ lineage conversion. (2017) Circulation 135: 914-6. PDF
- Munshi NV. CRISPR (Clustered Regularly Interspaced Palindromic Repeat)/Cas9 System: A Revolutionary Disease-Modifying Technology. (2016) Circulation 134:777-9. PDF
- Harris JP, Bhakta M, Bezprozvannaya S, Wang L, Lubczyk C, Olson EN, Munshi NV. MyoR Modulates Cardiac Conduction by Repressing Gata4. (2015) Mol Cell Biol 35: 649-61. PDF
- Nam YJ, Lubczyk C, Bhakta M, Zang T, Fernandez-Perez A, McAnally J, Bassel-Duby R, Olson, EN, Munshi NV. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. (2014) Development 141: 4267-78. PDF
- Munshi NV and Olson EN. Translational medicine. Improving cardiac rhythm with a biological pacemaker. (2014) Science 345: 268-9. PDF
- Nam YJ, Munshi NV. Chemical biology in regenerative medicine. First ed. Hong CC, Ao AS, Hao J, editors. West Sussex, United Kingdom: John Wiley & Sons; 2014. Chapter 4, Challenges and new directions for cardiac reprogramming; p.49-58. 219p. PDF
- Munshi NV. Gene regulatory networks in cardiac conduction system development. (2012) Circ Res 110:1525-1537. PDF
- Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JM, Hill JA, Olson EN. Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. (2009) Development 136: 2665-2674. PDF
- Fedele M, Pierantoni GM, Berlingieri MT, Battista S, Baldassarre G, Munshi N, Dentice M, Thanos D, Santoro M, Viglietto G, Fusco A. Overexpression of proteins HMGA1 induces cell cycle deregulation and apoptosis in normal rat thyroid cells. (2001) Cancer Res 61: 4583-90. PDF
- Munshi N, Agalioti T, Lomvardas S, Merika M, Chen G, Thanos D. Coordination of a transcriptional switch by HMGI(Y) acetylation. (2001) Science 293: 1133-6. PDF
- O’Neill DW, Shoetz SS, Lopez RA, Castle M, Rabinowitz L, Shor E, Krawchuk D, Goll MG, Renz M, Seelig HP, Han S, Seong RH, Park SD, Agalioti T, Munshi N, Thanos D, Erdjument-Bromage H, Tempst P, Bank A. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. (2000) Mol Cell Biol 20: 7572-82. PDF
- Chau KY, Munshi N, Keane-Myers A, Cheung-Chau KW, Tai AK, Manfioletti G, Dorey CK, Thanos D, Zack DJ, Ono SJ. The architectural transcription factor high mobility group I(Y) participates in photoreceptor-specific gene expression. (2000) J Neurosci 20: 7317-24. PDF
- Munshi N, Yie J, Merika M, Senger K, Lomvardas S, Agalioti T, Thanos D. The IFN-beta enhancer: a paradigm for understanding activation and repression of inducible gene expression. (1999) Cold Spring Harb Symp Quant Biol 64: 149-59.
- Yie J, Merika M, Munshi N, Chen G, Thanos D. The role of HMGI(Y) in the assembly and function of the IFN-beta enhanceosome. (1999) EMBO J 18: 3074-89. PDF
- Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D. Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. (1998) Mol Cell 2: 457-67. PDF